Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

نویسندگان

  • Andre Koper
  • Annette Schenck
  • Andreas Prokop
چکیده

Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need to consider the important contribution made by BM-dependent mechanisms, in addition to CAM-dependent adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The hangover gene negatively regulates bouton addition at the Drosophila neuromuscular junction

The synaptic growth of neurons during the development and adult life of an animal is a very dynamic and highly regulated process. During larval development in Drosophila new boutons and branches are added at the glutamatergic neuromuscular junction (NMJ) until a balance between neuronal activity and morphological structures is reached. Analysis of several Drosophila mutants suggest that bouton ...

متن کامل

wishful thinking Encodes a BMP Type II Receptor that Regulates Synaptic Growth in Drosophila

We conducted a large-scale screen for Drosophila mutants that have structural abnormalities of the larval neuromuscular junction (NMJ). We recovered mutations in wishful thinking (wit), a gene that positively regulates synaptic growth. wit encodes a BMP type II receptor. In wit mutant larvae, the size of the NMJs is greatly reduced relative to the size of the muscles. wit NMJs have reduced evok...

متن کامل

MICAL-like Regulates Fasciclin II Membrane Cycling and Synaptic Development

Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule (NCAM), plays a critical role in synaptic stabilization and plasticity. Although this molecule undergoes constitutive cycling at the synaptic membrane, how its membrane trafficking is regulated to ensure proper synaptic development remains poorly understood. In a genetic screen, we recovered a mutation in Drosophila ...

متن کامل

Watching a Synapse Grow Noninvasive Confocal Imaging of Synaptic Growth in Drosophila

The glutamatergic neuromuscular junction (NMJ) in Drosophila adds new boutons and branches during larval development. We generated transgenic fruit flies that express a novel green fluorescent membrane protein at the postsynaptic specialization, allowing for repeated noninvasive confocal imaging of synapses in live, developing larvae. As synapses grow, existing synaptic boutons stretch apart an...

متن کامل

Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis.

Laminins are heterotrimeric molecules found in all basement membranes. In mammals, they have been involved in diverse developmental processes, from gastrulation to tissue maintenance. The Drosophila genome encodes two laminin alpha chains, one beta and one Gamma, which form two distinct laminin trimers. So far, only mutations affecting one or other trimer have been analysed. In order to study e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012